
 1

Multi-Core Processing with Prospector
More Efficient Threading

The industry trend towards multi-core processors continues to advance unabated with quad-core
processors commonplace today and “many-core” processors in the development pipeline. High
performance developments such as the proprietary Intel hyper-threading technology has a
multiplying effect making each physical core appear to the operating system as 2 logical
processors. To take full advantage of the computing power of these modern processors,
application software must be revised to break down large computing tasks that were previously
done in a sequential manner into many separate tasks that can be executed concurrently with the
results assembled after all tasks have finished.

Beginning with version 6.5 in 2008, Prospector was revised to take advantage of multi-core
processors. The compute-intensive job of generating a 3D program is broken down into
separate individual tasks. Each task is then executed as an independent process called a thread.
These threads execute independently of each other to compute the solution for just their assigned
portion of the entire NC program. For example, a Z-Planar program requiring 100 levels running
on computer with 4 logical processors would be split into 4 separate threads because there are 4
processors available to us. Each of these threads would be assigned to do 25 levels. The
operating system automatically schedules the threads to execute on the individual 4 cores
concurrently. Once every thread had completed its assignment, the output from each is
assembled into the complete program.

Prospector versions released after 2010 takes multi-threading even further. Smarter algorithms
examines the nature of each program (tolerances, number of surfaces, step-down, ….) and the
computing resources available to make a better decision about how to divide up the work to
achieve greater throughput. In the example of splitting 100 levels into 4 separate threads, we
might find that 3 of the 4 finish their work in about 3 minutes while the other thread requires 12
minutes. That means we always have to wait for the thread with the longest processing time to
finish before the program can be assembled. The smarter approach implemented is to break the
job up into many smaller separate pieces that should require roughly the same amount of
computing power then schedule each of them to run as an independent thread when a thread is
available to do the work. To efficiently use a multi-core processor, an application creates as
many threads as there are logical processors. Typically this results in more separate tasks to be
done than there are concurrent threads. When a thread completes, it’s re-assigned to the next
task in the queue until all the tasks have been completed. You can see happening in real-time
looking at the progress meter in Prospector shown below.

 2

In the illustration above, over 1,000 levels need to be generated for this Z-Planar job that is
processing. The progress meter shows how the levels have been grouped as separate tasks.
Since this computer has 8 logical processors, there are 8 separate threads working concurrently.
When a task is complete, the thread is re-assigned to work on the next task in the queue. When
all the tasks are complete, the individual pieces of the program is assembled. The progress bar
labeled Assembling displays progress towards completion of this phase of program generation.
The progress bar labeled Verifying is the final phase of program generation to ensure that the
integrity of the program.

Speedier Program Generation

This new multi-threading technique is used for the 3D machining strategies Z-Planar With Clear,
Z-Planar No Clear, Box, Lace, Flow, Radial and Contour Machine. 2D programs and other 3D
strategies are not optimized as they aren’t compute-intensive and therefore would not benefit
from multi-threading. As you might expect this new technique yields the most performance
improvement over previous versions when the part data is more complex in terms of number of
surfaces a program must cut combined with program parameters result in large programs either
because of the number of levels generated from a small step-down or the number of individual
cuts from a small step-over or a fine tolerance or a combination of all these factors. In general

 3

performance will improve over previous versions for programs that needed the performance boost
the most. Here is an example from our test suite:

Computer:
 Intel Core i7 Q720 Quad-Core Processor
 4 GB RAM

Z-Planar No Clear Program
 .75” Ball Cutter
 .001” Tolerance
 .01” Step-down
 258 levels

Prospector without HPC
 561 seconds

Prospector with HPC
 349 seconds

37% Faster

Optimizing Your Computer’s Performance
Careful analysis of the performance characteristics of Prospector across a wide variety of
computers with different processor architectures, memory and 32/64-bit operating system
revealed the need to allow custom software settings to optimize performance. There are cases
where you may find it necessary (or even faster) to use fewer threads because your computer
does not have a sufficient amount of RAM or is constrained by 32-bit limits to support the full
complement of threads that will be created when maximum performance is required. Another
common scenario is that you are running 2 (or more) concurrent sessions of Prospector. Here
again the RAM constraints of your system may cause overall performance to actually decrease.

Getting Started

The Help/About dialog will show you the most important characteristics of your computer that
factor into optimization:

1. Version shows which edition of Prospector you
have installed (32-bit or 64-bit). The 64-bit
version is capable of using much more memory.
More about 64-bit computing later.

2. Logical Processors is how many CPUs the

operating system sees. This is not necessarily
the number of hardware processors or cores. In
this example (Intel Core i7 processor) the
number of logical processors is 8 even though
the number of physical cores is 4 because the
processor is Hyper Threaded.

3. Hyper-Theading indicates whether or not the
processor has Hyper-Threading technology.
Hyper-threading is an Intel-proprietary
technology used to improve parallelization of
computations. For each processor core that is
physically present, the operating system
addresses two virtual processors, and shares
the workload between them when possible.

http://en.wikipedia.org/wiki/Operating_system

 4

PowerSource Settings and Rules for High Performance Computing

Whether or not to use high performance computing optimization and the degree to which the
optimizations are to be performed is are configurable in your PowerSource database. Every
machining strategy that supports HPC has the PowerSource variables for performance tuning:

In the High Performance Computing folder, the Enable setting turns HPC on or off. The default
rule is to turn off HPC if your computer has only 1 logical processor (HPC makes no sense in this
case) or if your computer has 2 logical processors and has Hyper Threading (i.e. 1 physical
processor with Hyper Threading such as a Pentium 4 processor). For all other cases, HPC is
enabled.

When HPC is enabled, the variable Maximum Thread Count allows you to control how aggressive
you want to be in terms of the number of concurrent threads that Prospector should create at any
moment in time to calculate a cutter path. The default rule is to create as many threads as there
are number of logical processors. This is the most aggressive setting.

These same High Performance Computing settings are also available on the Finish page of the
New Program wizard if you wish to make adjustments for a particular program you are creating.

This simple rule provided as a default for PowerSource is based on the characteristics of the
computer. You can change the rules however you wish to address specific circumstances based
on how you typically work or the nature of certain programs that prove to be especially compute
intensive.

Optimization Example – Multiple Sessions

If you typically have 2 sessions of Prospector running concurrently or you use a server and
remote desktop clients, you may wish to decrease the Maximum Thread Count so that you can
be assured that there are never more threads running than there are logical processors to handle
the calculations. In this case, set the Maximum Thread Count to use half of the available logical
processors:

 5

Need Advice?

Many different circumstances and conditions can combined and programmed in the form of a
PowerSource rule to determine when to use HPC and the degree to which the resources of the
computer are to be utilized. For example, use all the processing power possible if this is a Z-
Planar No Clear with a finishing tolerance and has more than 250 levels otherwise just use ½ the
power. If you need advice or help constructing a PowerSource rule for your unique needs, call or
e-mail the HelpDesk for advice.

	Multi-Core Processing with Prospector
	Optimizing Your Computer’s Performance

